Choreography for nucleosomes: the conformational freedom of the nucleosomal filament and its limitations
نویسنده
چکیده
Eukaryotic DNA is organized into nucleosomes by coiling around core particles of histones, forming a nucleosomal filament. The significance for the conformation of the filament of the DNA entry/exit angle (alpha) at the nucleosome, the angle of rotation (beta) of nucleosomes around their interconnecting DNA (linker DNA) and the length of the linker DNA, has been studied by means of wire models with straight linkers. It is shown that variations in alpha and beta endow the filament with an outstanding conformational freedom when alpha is increased beyond 60-90 degrees, owing to the ability of the filament to change between forward right-handed and backward left-handed coiling. A wealth of different helical and looped conformations are formed in response to repeated beta sequences, and helical conformations are shown to be able to contract to a high density and to associate pairwise into different types of double fibers. Filaments with random beta sequences are characterized by relatively stable loop clusters connected by segments of higher flexibility. Displacement of core particles along the DNA in such fibers, combined with limited twisting of the linkers, can generate the beta sequence necessary for compaction into a regular helix, thus providing a model for heterochromatinization.
منابع مشابه
Spontaneous access to DNA target sites in folded chromatin fibers.
DNA wrapped in nucleosomes is sterically occluded from many protein complexes that must act on it; how such complexes gain access to nucleosomal DNA is not known. In vitro studies on isolated nucleosomes show that they undergo spontaneous partial unwrapping conformational transitions, which make the wrapped nucleosomal DNA transiently accessible. Thus, site exposure might provide a general mech...
متن کاملRad51 Polymerization Reveals a New Chromatin Remodeling Mechanism
Rad51 protein is a well known protagonist of homologous recombination in eukaryotic cells. Rad51 polymerization on single-stranded DNA and its role in presynaptic filament formation have been extensively documented. Rad51 polymerizes also on double-stranded DNA but the significance of this filament formation remains unclear. We explored the behavior of Saccharomyces cerevisiae Rad51 on dsDNA an...
متن کاملNucleosome structural transition during chromatin unfolding is caused by conformational changes in nucleosomal DNA.
We have recently reported that certain core histone-DNA contacts are altered in nucleosomes during chromatin unfolding (Usachenko, S. I., Gavin I. M., and Bavykin, S. G. (1996) J. Biol. Chem. 271, 3831-3836). In this work, we demonstrate that these alterations are caused by a conformational change in the nucleosomal DNA. Using zero-length protein-DNA cross-linking, we have mapped histone-DNA co...
متن کاملNucleosomes undergo slow spontaneous gaping
In eukaryotes, DNA is packaged into a basic unit, the nucleosome which consists of 147 bp of DNA wrapped around a histone octamer composed of two copies each of the histones H2A, H2B, H3 and H4. Nucleosome structures are diverse not only by histone variants, histone modifications, histone composition but also through accommodating different conformational states such as DNA breathing and dimer ...
متن کاملBiophysical analysis and small-angle X-ray scattering-derived structures of MeCP2–nucleosome complexes
MeCP2 is a highly abundant chromatin architectural protein with key roles in post-natal brain development in humans. Mutations in MeCP2 are associated with Rett syndrome, the main cause of mental retardation in girls. Structural information on the intrinsically disordered MeCP2 protein is restricted to the methyl-CpG binding domain; however, at least four regions capable of DNA and chromatin bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 35 شماره
صفحات -
تاریخ انتشار 2007